翻訳と辞書 |
Order-8 square tiling : ウィキペディア英語版 | Order-8 square tiling
In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of . == Symmetry == This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called ( *4444) with 4 order-4 mirror intersections. In Coxeter notation can be represented as (), ( *4444 orbifold) removing two of three mirrors (passing through the square center) in the () symmetry. The *4444 symmetry can be doubled by bisecting the fundamental domain (square) by a mirror, creating *884 symmetry. This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction t1(4,4,4), :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Order-8 square tiling」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|